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Novel neonicotinoid analogues bearing a 1,4-dihydropridine scaffold were designed and synthesized

by multicomponent reactions (MCRs) to enhance π-π stacking. The synthesized compounds were

identified by 1H NMR, 13C NMR, high-resolution mass spectroscopy, and elemental analysis.

Bioassay tests showed that some of them exhibited high insecticidal activities against pea aphid

(Aphis craccivora).
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INTRODUCTION

Acting on nicotinic acetylcholine receptor (nAChR) insect
neuronal systems (1-4), imidacloprid (1a) (Figure 1) started the
era of neonicotinoid insecticides, which have become a major
insecticide classwith high activitieswidelyused for cropprotection
and veterinary pest control (5). As is well-known, 6-Cl-PMNI ((2-
chloro-5-((2-(nitromethylene)imidazolidin-1-yl)methyl)pyridine,
1b) (Figure 1) was obtained before imidacloprid and had higher
binding affinity and activity than imidacloprid. Although its
application was limited by its photoinstability (6) and inferior
hydrophobicity (7), it is still an attractive molecule as lead
compound for chemists worldwide (8, 9).

In our previous work, numerous 1b derivatives were synthe-
sized. Compounds 2 (Figure 2) were obtained by introducing a
tetrahydropyridine ring. The photostability of 2was improved as
desired (10). Afterward, compounds 3 (Figure 2) were reported,
which had a bulky group conjugated system introduced by five-
membered heterocycles. Some 3 compounds had higher activities
than imidacloprid (11). The results encouraged us to consider
further structure derivation of 1b.

The research of binding model is always beneficial for molec-
ular design. In the development of neonicotinoid insecticides,
three kinds of action models were proposed by Yamamoto,
Kagabu, and Casida successively (12-14). In 2007, Qian et al.
suggested a new binding model of π-π interaction induced by
the hydrogen bond based on theory calculation (15). Then
two kinds of AChBP-imidacloprid complex crystal structures
were achieved by Casida and Sattelle (16, 17), respectively. After
that, Casida et al. designed compounds with extended N-sub-
stituted imine substituents and presumed the significance of the
π-stacking formed by the amidine plane (18). Also, Kagabu et al.

proposed that a water bridge was formed between the neonico-
tinoid and the relevant amino acid at the ligand binding pocket.
Novel compounds with methyl ketone, trifluoromethyl ketone,
and epoxycyclopentylmethyl substituents were obtained and
shown to enhance the binding affinity (19).

On the basis of the theory above, the influence factor of
higher activities of compounds 3 was thought to be over. It
was presumed that π-π stacking was enhanced by the big
conjugated system in compounds 3, which might influence the
binding model and improve the activities. Therefore, we try to
further enhance π-π stacking by introducing an aromatic
bicyclic moiety.

It is well-known that the heteroaromatic moiety and nitro
pharmacophore were very important in the structure of
neonicotinoids, which were also included in 1b (Figure 3).
According to this analysis, reaction sites a and b (Figure 3)
were to be modified, building target compound 6 (Figure 2)
bearing a 1,4-dihydropyridine scaffold. The 1,4-dihydropyr-
idine moiety was frequently used as a subunit of antiathero-
sclerotic, anticancer, and antidiabetic drugs (20-22). It can be
achieved conveniently by multicomponent reactions (MCRs)
using 1b, aryl carbonyl compounds, and malononitrile as
starting materials (23).

Figure 1. Structures of imidacloprid (1a) and 1b.
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MATERIALS AND METHODS

Instruments. All melting points (mp) were obtained with a B€uchi
Melting Point B540 and are uncorrected. NMR spectra were recorded in
DMSO-d6 (

1H at 400MHzand 13C at 100MHz) usingTMSas the internal
standard on a Bruker WP-400SY (400 MHz) spectrometer. Chemical
shifts are reported in δ (parts per million) values. High-resolution mass
spectra were recorded under electron impact (70 eV) condition using a
MicroMass GCT CA 055 instrument. Combustion analyses for elemental
composition were made with an Elementar vario EL III. Analytical thin-
layer chromatography (TLC) was carried out on precoated plates (silica
gel 60 F254), and spots were visualized with ultraviolet (UV) light. All
other solvents and reagents were used as obtained from commercial
sources without further purification.

General Procedure for the Preparation of Compounds 6a-p. A
solution of malononitrile (15 mmol) in anhydrous alcohol (15 mL) was
added dropwise to a solution of aryl aldehyde (15 mmol) in anhydrous
alcohol (15 mL) at room temperature. After 5 min of stirring at room
temperature, piperidine (0.1 mmol) used as catalyst was added dropwise.
The resulting mixture was stirred for another 2 h, then 1b (10 mmol) was
added to the reaction mixture, refluxed for 15-20 h, and cooled to room
temperature. Solid crystal products was filtered, washedwith CH2Cl2, and
dried to give desired products.

Data for 6a: yield, 82%; mp 223.2-223.7 �C; 1H NMR (400 MHz,
DMSO-d6), δ 3.93-4.01 (m, 3H), 4.08-4.17 (m, 1H), 4.72 (s, 1H), 4.74 (s,
2H), 6.54 (s, 2H,NH2), 6.98 (dd, J1=1.4Hz, J2=7.8Hz, 1H), 7.15-7.23
(m, 3H), 7.28 (d, J=8.0Hz, 1H), 7.64 (dd, J1= 2.6Hz, J2= 8.2Hz, 1H),
8.28 (d, J = 2.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6), δ 41.5, 43.9,
51.1, 51.5, 60.1, 106.2, 121.2, 124.4, 126.7, 127.0, 128.7, 131.4, 139.5, 144.8,
149.5, 149.6, 149.9, 152.9. Anal. Calcd for C20H17ClN6O2: C, 58.75; H,
4.19; N, 20.56. Found: C, 58.77; H, 3.89; N, 20.40.

Data for 6b: yield, 78%; mp 253.5-253.9 �C; 1H NMR (400 MHz,
DMSO-d6), δ 4.02-4.15 (m, 4H), 4.70 (d, J= 15.6 Hz, 1H), 4.77 (d, J=
16.0Hz, 1H), 4.81 (s, 1H), 6.70 (s, 2H,NH2), 7.21 (d, J=8.0Hz, 1H), 7.22
(d, J=8.8 Hz, 2H), 7.60 (dd, J1 = 1.6 Hz, J2 = 8.0 Hz, 1H), 8.05 (d, J=
8.4 Hz, 2H), 8.17 (s, 1H); 13C NMR (100 MHz, DMSO-d6), δ 41.6, 43.9,
51.3, 51.8, 58.5, 105.6, 120.8, 124.0, 124.3, 128.1, 131.3, 139.5, 146.6, 149.5,
149.9, 150.0, 152.1, 152.2. Anal. Calcd for C20H16ClN7O4: C, 52.93; H,
3.55; N, 21.60. Found: C, 52.90; H, 3.39; N, 21.48.

Data for 6c: yield, 59%; mp 244.3-245.1 �C; 1H NMR (400 MHz,
DMSO-d6), δ 4.01-4.15 (m, 4H), 4.69 (d, J= 16.0 Hz, 1H), 4.74 (d, J=
16.0Hz, 1H), 4.87 (s, 1H), 6.73 (s, 2H,NH2), 7.17 (d, J=8.4Hz, 1H), 7.44
(d, J=7.6 Hz, 1H), 7.51 (t, J=7.8 Hz, 1H), 7.60 (dd, J1 = 2.4 Hz, J2 =
8.4 Hz, 1H), 7.88 (t, J=1.8 Hz, 1H), 8.07 (dd, J1 = 1.2 Hz, J2 = 8.0 Hz,
1H), 8.17 (d, J = 2.4 Hz, 1H); 13C NMR (100 MHz, DMSO-d6), δ 41.3,
44.0, 51.4, 51.5, 58.5, 105.8, 120.9, 121.4, 122.2, 124.1, 130.4, 131.2, 133.7,
139.4, 146.9, 148.1, 149.5, 149.8, 150.2, 152.3. Anal. Calcd for C20H16-
ClN7O4: C, 52.93; H, 3.55; N, 21.60. Found: C, 52.82; H, 3.22; N, 21.38.

Data for 6d: yield, 41%; mp 224.6-245.8 �C; 1H NMR (400 MHz,
DMSO-d6), δ 4.00-4.13 (m, 4H), 4.73 (dd, J1 = 16.0 Hz, J2 = 20.0 Hz,
2H), 4.75 (s, 1H), 6.67 (s, 2H, NH2), 7.16 (d, J=8.4Hz, 1H), 7.24 (d, J=
8.0 Hz, 2H), 7.63 (dd, J1 = 2.4 Hz, J2 = 8.2 Hz, 1H), 7.64 (d, J=8.4 Hz,
2H), 8.18 (s, 1H); 13CNMR(100MHz,DMSO-d6), δ 41.8, 43.9, 51.4, 51.7,
58.6, 105.7, 109.9, 119.4, 120.9, 124.3, 127.9, 131.3, 132.7, 139.4, 149.5,
149.9, 149.9, 150.1, 152.3. Anal. Calcd for C21H16ClN7O2: C, 58.14; H,
3.72; N, 22.60. Found: C, 58.00; H, 3.50; N, 22.49.

Data for 6e: yield, 65%; mp 246.4-247.5 �C; 1H NMR (400 MHz,
DMSO-d6), δ 3.99-4.14 (m, 4H), 4.73 (s, 2H), 4.78 (s, 1H), 6.65 (s, 2H,
NH2), 7.24 (d, J=8.0 Hz, 1H), 7.36 (d, J=7.2 Hz, 1H), 7.43 (t, J=7.2
Hz, 1H), 7.50 (s, 1H), 7.62 (s, 2H), 8.22 (s, 1H); 13C NMR (100 MHz,
DMSO-d6), δ 41.6, 43.9, 51.5, 51.6, 58.9, 105.7, 111.8, 119.4, 120.9, 124.2,
129.9, 130.5, 131.0, 131.3, 132.2, 139.4, 146.3, 149.5, 149.8, 149.9, 152.4.
HRMS (ESI) calcd for C21H16ClN7O2 (M þ Na), 456.0952; found,
456.0970.

Data for 6f: yield, 61%; mp 191.5-192.0 �C; 1H NMR (400 MHz,
DMSO-d6), δ 3.97-4.16 (m, 4H), 4.74 (s, 3H), 6.60 (s, 2H, NH2), 7.10 (d,
J= 8.8 Hz, 2H), 7.18 (d, J= 8.0 Hz, 2H), 7.28 (d, J= 8.4 Hz, 1H), 7.65
(dd, J1 = 2.6 Hz, J2 = 8.2 Hz, 1H), 8.26 (d, J= 2.0 Hz, 1H); 13C NMR
(100 MHz, DMSO-d6), δ 41.1, 43.9, 51.4, 51.5, 59.5, 105.9, 119.3, 121.1,
121.2, 121.8, 124.3, 128.6, 131.4, 139.5, 144.1, 147.4, 149.6, 149.7, 149.9,
152.6. HRMS (ESI) calcd for C21H16ClF3N6O3 (M þ Na), 515.0822;
found, 515.0832. Anal. Calcd for C21H16ClF3N6O3: C, 51.18; H, 3.27; N,
17.05. Found: C, 50.43; H, 3.08; N, 16.59.

Data for 6g: yield, 64%; mp 237.7-238.2 �C; 1H NMR (400 MHz,
DMSO-d6), δ 3.91-4.15 (m, 4H), 4.73 (s, 3H), 6.62 (s, 2H, NH2), 6.97 (d,
J=7.6Hz, 1H), 7.17 (t, J=7.8Hz, 1H), 7.26 (t, J=1.8Hz, 1H), 7.28 (d,
J= 8.0 Hz, 1H), 7.37-7.39 (m, 1H), 7.65 (dd, J1 = 2.4 Hz, J2 = 8.4 Hz,
1H), 8.25 (d, J = 2.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6), δ 41.4,
43.9, 51.1, 51.5, 59.2, 105.8, 121.0, 122.1, 124.3, 126.0, 129.6, 130.0, 131.0,
131.3, 139.4, 147.5, 149.5, 149.8, 149.9, 152.7. Anal. Calcd for
C20H16BrClN6O2: C, 49.25; H, 3.31; N, 17.23. Found: C, 49.19; H, 3.01;
N, 17.05.

Data for 6h: yield, 49%; mp 261.7-262.1 �C; 1H NMR (400 MHz,
DMSO-d6), δ 4.01-4.14 (m, 4H), 4.72 (d, J= 15.6 Hz, 1H), 4.78 (d, J=
16.0Hz, 1H), 5.14 (s, 1H), 6.53 (s, 2H,NH2), 6.98 (d, J=8.4Hz, 1H), 7.20
(dd, J1 = 2.0 Hz, J2= 8.0 Hz, 1H), 7.42 (d, J=8.0 Hz, 1H), 7.46 (d, J=
2.0 Hz, 1H), 7.77 (dd, J1 = 2.2 Hz, J2 = 8.2 Hz, 1H), 8.31 (d, J=1.6 Hz,
1H); 13CNMR (100MHz, DMSO-d6), δ 39.7, 43.9, 51.3, 51.8, 59.1, 105.5,
120.4, 124.5, 127.9, 129.1, 131.4, 131.6, 132.1, 133.0, 139.8, 141.5, 149.5,
149.7, 150.0, 152.7. Anal. Calcd for C20H15Cl3N6O2: C, 50.28; H, 3.16; N,
17.59. Found: C, 50.36; H, 2.90; N, 17.38.

Data for 6i: yield, 65%; mp 252.1-253.0 �C; 1H NMR (400 MHz,
DMSO-d6), δ 3.96-4.18 (m, 4H), 4.77 (t, J= 17.0 Hz, 2H), 4.89 (s, 1H),
6.56 (s, 2H, NH2), 7.01 (t, J=8.2 Hz, 1H), 7.09 (d, J=8.0 Hz, 1H), 7.23
(d, J= 10.4 Hz, 1H), 7.36 (d, J= 8.0 Hz, 1H), 7.72 (d, J= 8.0 Hz, 1H),
8.26 (s, 1H); 13C NMR (100 MHz, DMSO-d6), δ 43.9, 51.4, 51.5, 56.5,

Figure 2. Development of novel neonicotinoid analogues in our group.

Figure 3. Pharmacophore and reaction sites at 1b.
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58.9, 104.9, 116.3, 116.5, 120.6, 124.4, 124.9, 124.9, 130.6, 130. 8, 131.2,
131.2, 131.3, 132.3, 132.4, 139.6, 149.5, 149.7, 150.1, 152.5, 158.8, 160.3.
HRMS (ESI) calcd for C20H15Cl2FN6O2 (M þ Na), 483.0515; found,
483.0523.

Data for 6j: yield, 72%; mp 265.4-265.8 �C; 1H NMR (400 MHz,
DMSO-d6), δ 3.98-4.05 (m, 3H), 4.09-4.12 (m, 1H), 4.71 (d, J=15.6Hz,
1H), 4.76 (d, J=15.6Hz, 1H), 5.12 (s, 1H), 6.53 (s, 2H,NH2), 6.89 (d, J=
8.4 Hz, 1H), 7.31 (dd, J1 = 2.0 Hz, J2 = 8.0 Hz, 1H), 7.42 (d, J=8.0 Hz,
1H), 7.56 (d, J=2.0Hz, 1H), 7.76 (dd, J1=2.4Hz, J2=8.4Hz, 1H), 8.30
(d, J= 2.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6), δ 40.1, 43.9, 51.3,
51.8, 59.0, 105.5, 120.3, 120.4, 124.5, 130.8, 131.4, 131.8, 131.9, 133.2,
139.8, 141.9, 149.5, 149.7, 150.0, 152.7. HRMS (ESI) calcd for
C20H15BrCl2N6O2 (M þ Na), 542.9715; found, 542.9741.

Data for 6k: yield, 40%; mp 202.6-203.2 �C; 1H NMR (400 MHz,
DMSO-d6), δ 2.23 (s, 3H), 3.90-4.01 (m, 3H), 4.14-4.20 (m, 1H), 4.73 (d,
J = 16.0 Hz, 1H), 4.78 (d, J = 15.6 Hz, 1H), 4.84 (s, 1H), 6.49 (s, 2H,
NH2), 6.82 (dd, J1=2.0Hz, J2=7.6Hz, 1H), 6.90 (dd, J1=8.6Hz, J2=
10.6 Hz, 1H), 6.99-7.02 (m, 1H), 7.35 (d, J=8.4 Hz, 1H), 7.70 (dd, J1 =
2.2 Hz, J2 = 8.2 Hz, 1H), 8.29 (d, J=2.4 Hz, 1H); 13C NMR (100MHz,
DMSO-d6), δ 20.7, 37.6, 44.0, 50.8, 51.5, 59.7, 105.0, 115.5, 115.7, 120.7,
124.4, 129.2, 129.3, 130.0, 130.1, 131.0, 131.1, 131.3, 133.6, 133.6, 139.6,
149.3, 149.7, 149.9, 152.9, 157.5, 159.9. Anal. Calcd for C21H18ClFN6O2:
C, 57.21; H, 4.12; N, 19.06. Found: C, 56.98; H, 3.78; N, 18.79.

Data for 6l: yield, 32%; mp 257.4-258.4 �C; 1H NMR (400 MHz,
DMSO-d6), δ 2.39 (s, 3H), 3.97-4.09 (m, 4H), 4.72 (d, J= 16.0 Hz, 1H),
4.76 (d, J=16.8Hz, 1H), 4.93 (d, J=1.6Hz, 1H), 6.51 (s, 2H,NH2), 6.75
(d, J=9.6Hz, 1H), 7.37 (d, J=8.0Hz, 1H), 7.41 (d,J=7.2Hz, 1H), 7.81
(dd, J1 = 2.6 Hz, J2 = 8.2 Hz, 1H), 8.27 (d, J= 2.0 Hz, 1H); 13C NMR
(100 MHz, DMSO-d6), δ 18.3, 38.1, 43.9, 51.4, 52.0, 59.9, 105.5, 105.7,
106.4, 115.4, 115.6, 120.8, 124.3, 131.5, 132.9, 133.0, 134.3, 139.7, 146.4,
146.5, 149.0, 149.6, 150.0, 152.6, 156.4, 158.8. Anal. Calcd for C21H17-
BrFN6O2: C, 48.53; H, 3.30; N, 16.17. Found: C, 48.28; H, 2.98; N,
16.02.

Data for 6m: yield, 63%; mp 236.2-236.9 �C; 1H NMR (400 MHz,
DMSO-d6), δ 2.41 (s, 3H), 3.96-4.14 (m, 4H), 4.74 (d, J= 16.0 Hz, 1H),
4.79 (d, J=15.6Hz, 1H), 4.99 (d, J=2.0Hz, 1H), 6.48 (s, 2H,NH2), 6.59
(dd, J1 = 2.4 Hz, J2 = 10.0 Hz, 1H), 6.85-6.90 (m, 1H), 7.09-7.12 (m,
1H), 7.39 (d, J=8.4Hz, 1H), 7.82 (dd, J1=2.4Hz, J2=8.0Hz, 1H), 8.31
(d, J= 2.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6), δ 18.7, 38.3, 43.9,
51.1, 52.0, 60.6, 106.6, 113.4, 113.7, 113.8, 114.0, 120.9, 124.4, 130.7, 130.7,
131.5, 131.7, 131.8, 139.6, 146.5, 146.6, 149.0, 149.6, 149.9, 152.9, 160.4,
162.8. HRMS (ESI) calcd for C21H18ClFN6O2 (M þ Na), 463.1061;
found, 463.1056.

Data for 6n: yield, 26%; mp 236.1-236.8 �C; 1H NMR (400 MHz,
DMSO-d6), δ 4.07 (m, 4H), 4.75 (s, 2H), 5.03 (s, 1H), 6.54 (s, 2H, NH2),
7.03 (d, J=6.0Hz, 1H), 7.42-7.46 (m, 2H), 7.62 (d, J=1.6Hz, 1H), 7.77
(dd, J1 = 2.4 Hz, J2 = 8.0 Hz, 1H), 8.30 (d, J= 1.6 Hz, 1H); 13C NMR
(100 MHz, DMSO-d6), δ 37.9, 43.9, 51.7, 51.8, 60.3, 106.7, 120.1, 122.5,
124.5, 125.5, 125.6, 131.5, 131.9, 132.2, 133.2, 139.8, 144.4, 149.7, 149.7,

150.1, 152.3. HRMS (ESI) calcd for C21H15Cl2F3N6O2 (M þ H),
511.0664; found, 511.0677.

Data for 6o: yield, 10%; mp 217.1-217.3 �C; 1H NMR (400 MHz,
DMSO-d6), δ 3.73 (s, 3H), 3.89-4.41 (m, 4H), 4.49 (s, 1H), 4.66 (s, 1H),
4.75 (d, J=2.4Hz, 1H), 6.51 (s, 2H, NH2), 6.75-6.77 (m, 2H), 6.87-6.90
(m, 1H), 7.30 (d, J=8.0Hz, 1H), 7.64 (dd, J1= 2.8Hz, J2= 8.0Hz, 1H),
8.27 (d, J = 2.4 Hz, 1H); 13C NMR (100 MHz, DMSO-d6), δ 42.9, 43.9,
45.7, 48.4, 51.1, 51.4, 55.5, 60.5, 106.6, 114.1, 124.4, 124.8, 127.7, 131.5,
136.8, 139.5, 139.7, 149.4, 149.6, 149.9, 158.4. HRMS (ESI) calcd for
C21H19ClN6O3 (M þ H), 439.1285; found, 439.1274.

Data for 6p: yield, 19%; mp 225.1-226.2 �C; 1H NMR (400 MHz,
DMSO-d6), δ 2.32 (d, J = 1.6 Hz, 3H), 3.98-4.15 (m, 4H), 4.76 (s, 2H),
5.02 (s, 1H), 6.48 (s, 2H, NH2), 6.59 (d, J = 7.6 Hz, 1H), 6.95-6.99 (m,
1H), 7.01-7.04 (m, 1H), 7.40 (d, J= 8.4 Hz, 1H), 7.76 (dd, J1 = 2.4 Hz,
J2 = 8.0 Hz, 1H), 8.32 (d, J= 2 Hz, 1H); 13C NMR (100 MHz, DMSO-
d6), δ 10.1, 10.2, 37.7, 43.9, 51.2, 51.8, 60.7, 106.8, 112.9, 113.2, 120.9,
121.7, 121.8, 123.3, 124.5, 127.6, 127.6, 131.5, 139.7, 148.9, 149.7, 149.9,
152.8, 159.2, 161.6. HRMS (ESI) calcd for C21H18ClFN6O2 (M þ H),
441.1242; found, 441.1227.

Biological Assay. All compounds were dissolved in acetone and
diluted with water containing Triton X-100 (0.1 mg/L) to obtain series
concentrations of 500.0, 50.0, and 25.0 mg/L and others for bioassays.

As previously tested (10), cowpea aphids (Aphis craccivora) were dipped
according to a slightly modified FAO dip test (24). Tender shoots of
soybean with 40-60 healthy apterous adults were dipped in diluted
solutions of the chemicals containing Triton X-100 (0.1 mg/L) for 5 s,
the superfluous fluid was removed, and the shoots were placed in the
conditioned room (25( 1 �C, 50% RH). Water containing Triton X-100
(0.1 mg L-1) was used as control. Mortality was assessed after 24 h; the
control mortality was 4.3%. Each treatment had three repetitions, and the
data were corrected and subjected to probit analysis using SPSS software.

RESULTS AND DISCUSSION

Synthesis. The neonicotinoid analogues bearing a 1,4-dihydro-
pyridine scaffold (6a-p) were synthesized as shown in Scheme 1.
The assembly of 6 can be explained via the initial Michael
addition of 7 to the ylidenic bond in 1b, leading to the formation
of anacyclic intermediate 8, which cyclized into the intermediate9
via nucleophilic attack of an NH group on a cyano carbon,
followedby tautomerization to the final product 6. The formation
of 7 is via Knoevenagel condensation reaction of malononitrile 4
and appropriate aromatic aldehyde 5.

The search for one-pot condensation reaction parameters
started with nitromethylene (1b), malononitrile (4), and p-nitro-
benzaldehyde (5a) in molar ratios from 1:1:1 to 1:2:2 in boiling
ethanolic piperidine from 2 to 17 h; desirable product could be
obtained up to 78% yield. However, no substantial gain in the

Scheme 1. Target Compound Synthesis via Aryl Aldehyde-Based Muliticomponet Reactions
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product yield was observed with increasing 4 and 5a loading from
150 to 200 mol %. Therefore, the optimum usage was fixed at
1:1.5:1.5 (1b/2/3a) for all subsequent experiments. To evaluate the
novel analogues, compounds 6b-p (Table 1) were achieved from15
additional aryl aldehydes (5b-p) using the optimized reaction
conditions. Unfortunately, no desirable product could be obtained
from alkyl aldehydes such as butyl aldehyde or heterocyclic
aldehydes such as pyridine aldehyde, furaldehyde, and thienyl
aldehyde. The structures of the title compounds were well char-
acterized by 1HNMR, 13C NMR, HRMS, and elemental analysis.

Biological Activities. Compounds 6c, 6d, 6f, 6g, 6h, 6m, 6n, 6o,
and 6p exhibited good insecticidal activity against pea aphid
(Table 1) and had >90% mortality at 500 mg L-1. The LC50

values of those compounds were 0.07903, 0.1746, 0.09797,
0.19702, 0.1326, 0.09614, 0.06159, 0.00975, and 0.00345 mmol
L-1, respectively,whereas that of imidaclopridwas 0.03502mmol
L-1. It was concluded that compounds 6o and 6p showed 3.6- and
10.2-fold potency compared with imidacloprid. For the effect of
substituents at the phenyl group, it was observed that compounds
demonstrated good activities with either electron-withdrawing or
electron-donating groups. Nevertheless, an electron-donating
group is favorable for high activities from the data analysis
present. Further study is underway.

In conclusion, various neonicotinoid analogues bearing a 1,4-
dihydropridine scaffold were synthesized successfully via multi-
component reactions. Most of compounds showed good insecti-
cidal activities at 500 mg L-1, which implied a new method of
molecular design, which is to obtain highly active compounds by
enhancing π-π stacking.

Supporting Information Available: 1H NMR and 13C NMR

spectra of compounds 6. This material is available free of charge

via the Internet at http://pubs.acs.org.
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